7428 independent reflections

 $R_{\rm int} = 0.086$ 

5265 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## N-[(Diphenylamino)methyl]acetamide

#### Ganesan Venkatesa Prabhu,<sup>a</sup> Nagarajan Vembu,<sup>b</sup>\* Loganathan Muruganandam<sup>a</sup> and Anthony Linden<sup>c</sup>

<sup>a</sup>Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, <sup>b</sup>Department of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and <sup>c</sup>Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Correspondence e-mail: vembu57@yahoo.com

Received 18 April 2007; accepted 30 April 2007

Key indicators: single-crystal X-ray study; T = 160 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.056; wR factor = 0.156; data-to-parameter ratio = 16.4.

The dihedral angles between the mean planes of the two phenyl rings for the two molecules in the asymmetric unit of the title compound,  $C_{15}H_{16}N_2O$ , are 55.34 (5) and 71.24 (5)°. In one of the molecules, the entire aminomethylacetamide chain is largely planar, while in the second the chain is twisted significantly at the methylene C atom. In the crystal structure, extended chains form along c through  $N-H\cdots O$  hydrogen bonds between the amide groups. Further aggregation is completed by the presence of C-H···O and C-H··· $\pi$ interactions.

#### **Related literature**

For applications of diphenylamine derivatives, see Tomlin (1997), Bettaieb & Aaron (2001) and Shirota (2005). A structural isomer [(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>CHNHCH<sub>2</sub>CONH<sub>2</sub>] of the title compound  $[(C_6H_5)_2NCH_2NHCOCH_3]$  has been reported (Mancilla et al., 2003). For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Etter (1990).

# HN

#### **Experimental**

#### Crystal data

| $C_{15}H_{16}N_2O$               | $V = 2550.26 (9) \text{ Å}^3$     |
|----------------------------------|-----------------------------------|
| $M_r = 240.30$                   | Z = 8                             |
| Monoclinic, $P2_1/c$             | Mo $K\alpha$ radiation            |
| a = 15.5339 (2) Å                | $\mu = 0.08 \text{ mm}^{-1}$      |
| b = 8.7382 (2) Å                 | T = 160 (2)  K                    |
| c = 18.7931 (4) Å                | $0.33 \times 0.25 \times 0.25$ mm |
| $\beta = 91.3265 \ (10)^{\circ}$ |                                   |

#### Data collection

| Nonius KappaCCD area-detector |  |
|-------------------------------|--|
| diffractometer                |  |
| Absorption correction: none   |  |
| 76517 measured reflections    |  |
|                               |  |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.056$ | 453 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.156$               | All H-atom parameters refined                              |
| S = 1.06                        | $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 7428 reflections                | $\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

|                              | • • • •        |                         |              |                                      |
|------------------------------|----------------|-------------------------|--------------|--------------------------------------|
| $D - H \cdot \cdot \cdot A$  | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
| N9-H9···O11 $A^{i}$          | 0.923 (19)     | 2.097 (18)              | 2.9924 (15)  | 163.2 (16)                           |
| $C18-H18A\cdots O11A^{1}$    | 0.98 (2)       | 2.48 (2)                | 3.329 (2)    | 145.1 (17)                           |
| $N9A - H9' \cdots O11$       | 0.85 (2)       | 2.03 (2)                | 2.8671 (16)  | 169.7 (18)                           |
| $C17A - H17' \cdots O11A$    | 1.016 (18)     | 2.440 (18)              | 3.4288 (18)  | 164.5 (14)                           |
| $C18A - H18E \cdots O11$     | 0.99 (2)       | 2.42 (2)                | 3.254 (2)    | 141.2 (14)                           |
| $C3-H3\cdots Cg4^{ii}$       | 0.95 (2)       | 2.89                    | 3.68         | 141                                  |
| $C8-H8A\cdots Cg3^{ii}$      | 0.98 (2)       | 3.14                    | 3.92         | 139                                  |
| $C8A - H8C \cdots Cg4^{iii}$ | 1.03 (1)       | 3.23                    | 3.96         | 129                                  |
| $C14-H14\cdots Cg1^{iv}$     | 0.94 (2)       | 2.91                    | 3.74         | 148                                  |
| $C16A - H16' \cdots Cg3^{i}$ | 0.97 (2)       | 3.19                    | 3.97         | 139                                  |
| $C17 - H17 \cdots Cg1^{v}$   | 0.93 (2)       | 2.95                    | 3.49         | 118                                  |
| $C18-H18C\cdots Cg2$         | 0.97 (2)       | 2.80                    | 3.54         | 134                                  |

Symmetry codes: (i)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ ; (ii)  $-x, y - \frac{1}{2}, -z + \frac{1}{2}$ ; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y + 1, -z; (v)  $-x, y + \frac{1}{2}, -z + \frac{1}{2}$ . *Cg*1, *Cg2*, *Cg3* are *Cg4* are the centroids of rings C1–C6, C12–C17, C1A–C6A and C12A–C17A, respectively.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2298).

#### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bettaieb, L. & Aaron, J. J. (2001). Turk. J. Chem. 25, 165-171.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

Mancilla, T., Zamudio-Rivera, L. S., Carrillo, L., Beltran, H. I. & Farfan, N. (2003). ARKIVOC, xi, 37-47.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Shirota, Y. (2005). J. Mater. Chem. 15, 75–93.
  Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
  Tomlin, C. D. S. (1997). The Pesticide Manual, 11th ed. British Crop Protection Council, Farnham, Surrey, England.

Acta Cryst. (2007). E63, o2841-o2842 [doi:10.1107/S1600536807021459]

#### N-[(Diphenylamino)methyl]acetamide

#### G. V. Prabhu, N. Vembu, L. Muruganandam and A. Linden

#### Comment

Diphenylamine derivatives find applications in DNA detection, plant growth regulation, pesticides (Tomlin, 1997), pharmaceuticals (Bettaieb & Aaron, 2001) and materials science (Shirota, 2005). The present investigation is aimed at the study of the molecular and supramolecular architecture of the title compound, (I). This study may serve as a forerunner to a study of the correlation between the molecular and supramolecular features of this compound and its biological activity.

There are two independent molecules in the asymmetric unit (Fig. 1). The dihedral angles between the mean planes of the two phenyl rings in each independent molecule are  $55.34 (5)^{\circ}$  and  $71.24 (5)^{\circ}$ , respectively. The bond lengths are comparable to the values reported for similar compounds (Allen *et al.*, 1987). The plane defined by atoms N7, C8 and N9 is almost coplanar with the mean plane through atoms C8, N9, C10, O11 and C18 (dihedral angle is  $16.27 (8)^{\circ}$ ) in molecule 1, whereas the corresponding planes in molecule 2 intersect at the much larger angle of  $61.51 (8)^{\circ}$ .

The crystal structure of (I) is stabilized by the interplay of N—H···O, C—H···O and C—H··· $\pi$  interactions (Table 1). The N9—H9···O11A<sup>i</sup> (see Table 1 for symmetry codes) and C18—-H18A···O11A<sup>i</sup> interactions constitute a pair of bifurcated acceptor bonds generating a motif of graph set (Bernstein *et al.*, 1995; Etter, 1990) R<sup>1</sup><sub>2</sub>(6). Similarly, the N9A—H9····O11 and C18A—H18E···O11 interactions link the two molecules of the asymmetric unit to give a R<sup>1</sup><sub>2</sub>(6) motif. The N—H···O interactions generate an infinite chain of alternating symmetry-independent molecules along [001] (Fig. 2), which can be designated with the binary motif of C<sup>2</sup><sub>2</sub>(8). An S(8) motif is formed by the C17A—H17<sup>····O11A</sup> interaction.

The C18—H18C···Cg2 interaction (Table 1) generates an S(7) motif. This is a special type of motif whose atom count in the pattern is assigned by taking the entire aromatic ring (C12—C17) as a single acceptor atom. The C3—H3···Cg4<sup>ii</sup> and C8—H8A···Cg3<sup>ii</sup> interactions together generate an  $R^2_2(10)$  motif. Cg1, Cg2, Cg3 & Cg4 (Table 1) refer to the centroids of the C1—C6, C12—C17, C1A—C6A & C12A—C17A rings, respectively.

#### **Experimental**

The title compound was synthesized by a Mannich condensation reaction involving acetamide, formaldehyde and diphenylamine in a 1:1:0.5 molar ratio. Acetamide was dissolved in ethanol and, to this solution, formaldehyde was added with stirring. Diphenylamine dissolved in acetone was added in small quantities to the above mixture and stirred. After 10 days, the solid product formed was filtered and washed with distilled water, followed by small quantities of acetone. The compound was dried at 333 K and diffraction quality crystals were obtained by recrystallization from ethanol. Microelemental analysis (Calcd & exptl. values) C 75.0 & 73.01, H 6.6 & 6.19 and N 11.66 & 11.58. Mass spectrum (m/e): 240, 197, 182, 168 Molecular Weight Determination by Rast method : exptl. 246 expected 240.

#### Refinement

All H atoms were located in difference maps and their positions and isotropic displacement parameters were refined freely.

#### Figures



Fig. 1. The asymmetric unit of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. H-atoms are omitted for clarity.



Fig. 2. View of the molecule along y-axis showing the 1D chain of N—H…O interactions along [001].

#### N-[(Diphenylamino)methyl]acetamide

| Crystal data                     |                                                 |
|----------------------------------|-------------------------------------------------|
| $C_{15}H_{16}N_2O$               | $F_{000} = 1024$                                |
| $M_r = 240.30$                   | $D_{\rm x} = 1.252 \ {\rm Mg \ m}^{-3}$         |
| Monoclinic, $P2_1/c$             | Melting point: 391-392 K                        |
| Hall symbol: -P 2ybc             | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| <i>a</i> = 15.5339 (2) Å         | Cell parameters from 7775 reflections           |
| b = 8.7382 (2)  Å                | $\theta = 2.0 - 30.0^{\circ}$                   |
| c = 18.7931 (4) Å                | $\mu = 0.08 \text{ mm}^{-1}$                    |
| $\beta = 91.3265 \ (10)^{\circ}$ | T = 160 (2)  K                                  |
| $V = 2550.26 (9) \text{ Å}^3$    | Prism, colourless                               |
| <i>Z</i> = 8                     | $0.33\times0.25\times0.25~mm$                   |
|                                  |                                                 |

#### Data collection

| Nonius KappaCCD area-detector<br>diffractometer           | 7428 independent reflections           |
|-----------------------------------------------------------|----------------------------------------|
| Radiation source: Nonius FR590 sealed tube generat-<br>or | 5265 reflections with $I > 2\sigma(I)$ |
| Monochromator: horizontally mounted graphite crystal      | $R_{\rm int} = 0.086$                  |
| Detector resolution: 9 pixels mm <sup>-1</sup>            | $\theta_{\text{max}} = 30.1^{\circ}$   |
| T = 160(1)  K                                             | $\theta_{\min} = 2.2^{\circ}$          |
| $\phi$ and $\omega$ scans with $\kappa$ offsets           | $h = -21 \rightarrow 21$               |
| Absorption correction: none                               | $k = -12 \rightarrow 12$               |

76517 measured reflections  $l = -26 \rightarrow 26$ 

#### Refinement

Refinement on  $F^2$ 

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.056$  $wR(F^2) = 0.156$ 

S = 1.06

7428 reflections

453 parameters

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

#### Special details

**Experimental**. IR spectrum in KBr : 3257 (NH stretch), 3060 (Ar CH stretch), 2366 (ring C=C), 1637 (CO stretch), 1588 (NH in plane bend), 1493 (CN stretch), 751 & 693 (mono substituted Ar ring) <sup>1</sup>H NMR in dmso-d<sub>6</sub> :7.3038-6.9624 (Ar), 8.4598 (NH), 1.8418 s (CH<sub>3</sub>), 5.0 d (CH<sub>2</sub>) & 3.3552 (water in dmso-d<sub>6</sub>) ppm <sup>13</sup>C NMR in dmso-d<sub>6</sub> :169.598 (CO), 146.606, 129.228, 121.715 & 120.912 (Ar), 146.606 (substituted C in ring), 56.116 (CH<sub>2</sub> bonded to N) & 22.572 (CH<sub>3</sub>) ppm.

All H-atom parameters refined

where  $P = (F_0^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\text{max}} < 0.001$  $\Delta\rho_{\text{max}} = 0.23 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$ 

Extinction correction: none

 $w = 1/[\sigma^2(F_0^2) + (0.0794P)^2 + 0.3971P]$ 

Solvent used: EtOH Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (deg.): 0.438 (1) Frames collected: 415 Seconds exposure per frame: 36 Degrees rotation per frame: 1.9 Crystal-Detector distance (mm): 30.0 **Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|    | x             | У            | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ |
|----|---------------|--------------|-------------|---------------------------|
| C1 | -0.01832 (8)  | 0.29539 (15) | 0.14883 (7) | 0.0211 (3)                |
| C2 | -0.09719 (9)  | 0.36679 (17) | 0.13395 (8) | 0.0252 (3)                |
| C3 | -0.16398 (9)  | 0.28519 (18) | 0.10190 (8) | 0.0302 (3)                |
| C4 | -0.15435 (10) | 0.13199 (19) | 0.08551 (8) | 0.0309 (3)                |
| C5 | -0.07661 (9)  | 0.06029 (17) | 0.10076 (8) | 0.0284 (3)                |
| C6 | -0.00904 (9)  | 0.14121 (16) | 0.13188 (8) | 0.0250 (3)                |
| N7 | 0.05056 (7)   | 0.37343 (13) | 0.18421 (6) | 0.0245 (3)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C <sup>0</sup> | 0.0022((0))  | 0 20551 (17)               | 0.24200 (8)  | 0.0252 (2)             |
|----------------|--------------|----------------------------|--------------|------------------------|
| C8             | 0.09226 (9)  | 0.29551 (17)               | 0.24309 (8)  | 0.0253(3)              |
| N9<br>C10      | 0.17380(7)   | 0.22970(13)<br>0.18262(15) | 0.22403(0)   | 0.0218(2)<br>0.0216(2) |
| 011            | 0.23004 (8)  | 0.18302(13)<br>0.10050(12) | 0.27043(7)   | 0.0210(3)              |
| C12            | 0.21192(7)   | 0.19959 (13)               | 0.33981(3)   | 0.0313(3)              |
| C12            | 0.07077 (8)  | 0.52134(13)                | 0.10408(7)   | 0.0220(3)              |
| C13            | 0.05035(9)   | 0.38340(17)                | 0.09908 (8)  | 0.0209(3)              |
| C14<br>C15     | 0.07814(10)  | 0.72975 (18)               | 0.07981 (10) | 0.0300 (4)             |
|                | 0.13260 (11) | 0.81400 (19)               | 0.12401 (11) | 0.0417(5)              |
| C16            | 0.15846 (11) | 0.7520 (2)                 | 0.18810 (11) | 0.0405 (4)             |
| C17            | 0.13206 (10) | 0.60693 (19)               | 0.20888 (9)  | 0.0314 (3)             |
| C18            | 0.31169 (10) | 0.10/02 (19)               | 0.25530 (9)  | 0.0316 (3)             |
| CIA            | 0.41376 (8)  | 0.47118 (14)               | 0.36084 (7)  | 0.0203 (3)             |
| C2A            | 0.35280 (9)  | 0.52647 (16)               | 0.31177 (8)  | 0.0250 (3)             |
| C3A            | 0.36483 (10) | 0.50847 (18)               | 0.23963 (8)  | 0.0316 (3)             |
| C4A            | 0.43723 (10) | 0.43434 (19)               | 0.21546 (8)  | 0.0335 (4)             |
| C5A            | 0.49697 (10) | 0.37669 (19)               | 0.26369 (9)  | 0.0343 (4)             |
| C6A            | 0.48578 (9)  | 0.39454 (17)               | 0.33625 (8)  | 0.0285 (3)             |
| N7A            | 0.40232 (7)  | 0.49085 (12)               | 0.43557 (6)  | 0.0229 (3)             |
| C8A            | 0.38415 (9)  | 0.35492 (15)               | 0.47658 (8)  | 0.0225 (3)             |
| N9A            | 0.29531 (7)  | 0.30152 (13)               | 0.46900 (6)  | 0.0211 (2)             |
| C10A           | 0.24228 (9)  | 0.28198 (15)               | 0.52379 (7)  | 0.0235 (3)             |
| O11A           | 0.26156 (8)  | 0.31970 (13)               | 0.58554 (5)  | 0.0367 (3)             |
| C12A           | 0.38663 (8)  | 0.63759 (15)               | 0.46278 (7)  | 0.0200 (3)             |
| C13A           | 0.41939 (9)  | 0.76591 (16)               | 0.42782 (8)  | 0.0260 (3)             |
| C14A           | 0.40855 (10) | 0.91092 (17)               | 0.45551 (9)  | 0.0311 (3)             |
| C15A           | 0.36551 (10) | 0.93288 (17)               | 0.51808 (9)  | 0.0308 (3)             |
| C16A           | 0.33210 (9)  | 0.80765 (17)               | 0.55239 (8)  | 0.0285 (3)             |
| C17A           | 0.34189 (9)  | 0.66043 (16)               | 0.52556 (7)  | 0.0237 (3)             |
| C18A           | 0.15771 (11) | 0.2075 (2)                 | 0.50598 (9)  | 0.0335 (4)             |
| H2             | -0.1035 (10) | 0.473 (2)                  | 0.1444 (9)   | 0.029 (4)*             |
| H3             | -0.2181 (12) | 0.3335 (19)                | 0.0918 (9)   | 0.034 (4)*             |
| H4             | -0.2006 (12) | 0.074 (2)                  | 0.0649 (10)  | 0.041 (5)*             |
| Н5             | -0.0677 (11) | -0.049 (2)                 | 0.0879 (10)  | 0.040 (5)*             |
| H6             | 0.0476 (10)  | 0.0891 (18)                | 0.1419 (8)   | 0.025 (4)*             |
| H8A            | 0.0546 (11)  | 0.2130 (19)                | 0.2584 (9)   | 0.030 (4)*             |
| H8B            | 0.1035 (10)  | 0.3654 (18)                | 0.2828 (9)   | 0.026 (4)*             |
| H9             | 0.1913 (11)  | 0.2184 (19)                | 0.1778 (10)  | 0.034 (5)*             |
| H13            | 0.0134 (11)  | 0.528 (2)                  | 0.0675 (10)  | 0.036 (5)*             |
| H14            | 0.0616 (14)  | 0.772 (2)                  | 0.0355 (13)  | 0.057 (6)*             |
| H15            | 0.1532 (13)  | 0.913 (3)                  | 0.1108 (11)  | 0.058 (6)*             |
| H16            | 0.1992 (14)  | 0.811 (2)                  | 0.2187 (12)  | 0.054 (6)*             |
| H17            | 0.1503 (12)  | 0.568 (2)                  | 0.2528 (11)  | 0.045 (5)*             |
| H18A           | 0.3210 (14)  | 0.105 (2)                  | 0.2040 (13)  | 0.060 (6)*             |
| H18B           | 0.3085 (15)  | -0.006 (3)                 | 0.2706 (13)  | 0.071 (7)*             |
| H18C           | 0.3611 (13)  | 0.153 (2)                  | 0.2790 (11)  | 0.052 (6)*             |
| H2'            | 0.2999 (11)  | 0.577 (2)                  | 0.3275 (9)   | 0.036 (4)*             |
| H3'            | 0.3208 (12)  | 0.548 (2)                  | 0.2048 (10)  | 0.045 (5)*             |
| <br>H4'        | 0.4457(12)   | 0 427 (2)                  | 0 1645 (11)  | 0.046(5)*              |
| H5'            | 0 5507 (12)  | 0 3211 (19)                | 0 2476 (10)  | 0 036 (4)*             |
|                |              |                            |              | 0.000(1)               |

| H6'  | 0.5273 (11) | 0.3603 (19) | 0.3721 (10) | 0.031 (4)* |
|------|-------------|-------------|-------------|------------|
| H8C  | 0.4265 (9)  | 0.2723 (17) | 0.4602 (8)  | 0.018 (4)* |
| H8D  | 0.3939 (9)  | 0.3741 (17) | 0.5278 (9)  | 0.022 (4)* |
| H9'  | 0.2768 (12) | 0.272 (2)   | 0.4283 (11) | 0.043 (5)* |
| H13' | 0.4509 (10) | 0.7530 (18) | 0.3859 (9)  | 0.025 (4)* |
| H14' | 0.4322 (13) | 1.002 (2)   | 0.4266 (11) | 0.054 (6)* |
| H15' | 0.3571 (11) | 1.030 (2)   | 0.5386 (10) | 0.038 (5)* |
| H16' | 0.3000 (11) | 0.8205 (19) | 0.5954 (10) | 0.033 (4)* |
| H17' | 0.3179 (10) | 0.570 (2)   | 0.5525 (9)  | 0.034 (4)* |
| H18D | 0.1136 (15) | 0.255 (3)   | 0.5299 (13) | 0.068 (7)* |
| H18E | 0.1435 (11) | 0.206 (2)   | 0.4542 (11) | 0.040 (5)* |
| H18F | 0.1647 (14) | 0.103 (3)   | 0.5248 (13) | 0.071 (7)* |
|      |             |             |             |            |

## Atomic displacement parameters $(\text{\AA}^2)$

|      | $U^{11}$   | $U^{22}$   | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|------|------------|------------|-------------|-------------|-------------|-------------|
| C1   | 0.0203 (6) | 0.0233 (7) | 0.0198 (6)  | -0.0002 (5) | 0.0026 (5)  | 0.0043 (5)  |
| C2   | 0.0233 (7) | 0.0262 (7) | 0.0261 (7)  | 0.0041 (5)  | 0.0029 (6)  | 0.0021 (6)  |
| C3   | 0.0207 (7) | 0.0413 (9) | 0.0286 (8)  | 0.0027 (6)  | 0.0000 (6)  | 0.0071 (7)  |
| C4   | 0.0279 (7) | 0.0393 (8) | 0.0255 (8)  | -0.0107 (6) | -0.0005 (6) | 0.0021 (6)  |
| C5   | 0.0339 (8) | 0.0255 (7) | 0.0260 (7)  | -0.0052 (6) | 0.0047 (6)  | 0.0014 (6)  |
| C6   | 0.0241 (7) | 0.0238 (7) | 0.0272 (7)  | 0.0022 (5)  | 0.0040 (6)  | 0.0043 (6)  |
| N7   | 0.0239 (6) | 0.0237 (6) | 0.0258 (6)  | -0.0014 (4) | -0.0042 (5) | 0.0056 (5)  |
| C8   | 0.0246 (7) | 0.0316 (8) | 0.0199 (7)  | 0.0026 (6)  | 0.0022 (5)  | 0.0040 (6)  |
| N9   | 0.0240 (6) | 0.0267 (6) | 0.0145 (6)  | 0.0011 (5)  | -0.0010 (4) | 0.0003 (5)  |
| C10  | 0.0240 (6) | 0.0214 (6) | 0.0192 (6)  | -0.0057 (5) | -0.0038 (5) | 0.0015 (5)  |
| 011  | 0.0319 (5) | 0.0452 (6) | 0.0168 (5)  | -0.0048 (5) | -0.0036 (4) | 0.0028 (4)  |
| C12  | 0.0211 (6) | 0.0213 (6) | 0.0239 (7)  | 0.0032 (5)  | 0.0064 (5)  | -0.0013 (5) |
| C13  | 0.0283 (7) | 0.0250 (7) | 0.0276 (8)  | 0.0038 (6)  | 0.0063 (6)  | 0.0020 (6)  |
| C14  | 0.0334 (8) | 0.0280 (8) | 0.0473 (10) | 0.0088 (6)  | 0.0152 (8)  | 0.0124 (7)  |
| C15  | 0.0350 (9) | 0.0220 (8) | 0.0693 (13) | 0.0015 (7)  | 0.0237 (9)  | 0.0005 (8)  |
| C16  | 0.0318 (8) | 0.0341 (9) | 0.0563 (12) | -0.0088 (7) | 0.0144 (8)  | -0.0161 (8) |
| C17  | 0.0273 (7) | 0.0372 (8) | 0.0299 (8)  | -0.0038 (6) | 0.0057 (6)  | -0.0069 (7) |
| C18  | 0.0254 (7) | 0.0361 (9) | 0.0331 (9)  | 0.0034 (6)  | -0.0051 (6) | 0.0023 (7)  |
| C1A  | 0.0219 (6) | 0.0187 (6) | 0.0204 (6)  | -0.0026 (5) | 0.0034 (5)  | -0.0004 (5) |
| C2A  | 0.0246 (7) | 0.0267 (7) | 0.0238 (7)  | 0.0054 (6)  | 0.0047 (5)  | 0.0016 (6)  |
| C3A  | 0.0350 (8) | 0.0367 (8) | 0.0233 (7)  | 0.0047 (6)  | 0.0022 (6)  | 0.0056 (6)  |
| C4A  | 0.0392 (8) | 0.0389 (9) | 0.0230 (7)  | 0.0013 (7)  | 0.0103 (6)  | -0.0019 (7) |
| C5A  | 0.0274 (7) | 0.0407 (9) | 0.0353 (9)  | 0.0040 (7)  | 0.0091 (7)  | -0.0077 (7) |
| C6A  | 0.0224 (7) | 0.0319 (8) | 0.0312 (8)  | 0.0031 (6)  | -0.0013 (6) | -0.0015 (6) |
| N7A  | 0.0310 (6) | 0.0179 (5) | 0.0199 (6)  | -0.0013 (4) | 0.0027 (5)  | 0.0012 (4)  |
| C8A  | 0.0266 (7) | 0.0203 (6) | 0.0204 (7)  | -0.0006 (5) | -0.0035 (5) | 0.0039 (5)  |
| N9A  | 0.0264 (6) | 0.0221 (6) | 0.0150 (6)  | -0.0025 (4) | -0.0006 (5) | 0.0003 (4)  |
| C10A | 0.0327 (7) | 0.0204 (6) | 0.0174 (7)  | -0.0010 (5) | 0.0024 (5)  | 0.0026 (5)  |
| O11A | 0.0500 (7) | 0.0442 (7) | 0.0160 (5)  | -0.0127 (5) | 0.0043 (5)  | -0.0013 (5) |
| C12A | 0.0187 (6) | 0.0212 (6) | 0.0199 (6)  | -0.0018 (5) | -0.0028 (5) | -0.0001 (5) |
| C13A | 0.0283 (7) | 0.0237 (7) | 0.0263 (7)  | -0.0037 (6) | 0.0046 (6)  | 0.0005 (6)  |
| C14A | 0.0357 (8) | 0.0216 (7) | 0.0360 (8)  | -0.0048 (6) | 0.0014 (7)  | 0.0016 (6)  |

| C15A<br>C16A<br>C17A<br>C18A | 0.0353 (8)<br>0.0292 (7)<br>0.0250 (7)<br>0.0327 (8) | 0.0232 (7)<br>0.0337 (8)<br>0.0270 (7)<br>0.0416 (9) | 0.0336 (8)<br>0.0227 (7)<br>0.0192 (7)<br>0.0263 (8) | 0.0020 (6)<br>-0.0012 (6)<br>-0.0050 (6)<br>-0.0077 (7) | -0.0037 (6)<br>-0.0005 (6)<br>-0.0015 (5)<br>0.0060 (7) | -0.0056 (6)<br>-0.0072 (6)<br>-0.0012 (6)<br>0.0018 (7) |
|------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Geometric paran              | neters (Å, °)                                        |                                                      |                                                      |                                                         |                                                         |                                                         |
| C1 - C6                      |                                                      | 1 3926 (19)                                          | C1A                                                  | C6A                                                     | 1 30                                                    | 19 (19)                                                 |
| C1 - C2                      |                                                      | 1.3926 (19)                                          | C1A-                                                 | C2A                                                     | 1.32                                                    | (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(                |
| C1—N7                        |                                                      | 1.4208 (18)                                          | C1A                                                  | N7A                                                     | 1.57                                                    | 01(17)                                                  |
| C2—C3                        |                                                      | 1.385 (2)                                            | C2A—                                                 | C3A                                                     | 1.38                                                    | (2)                                                     |
| С2—Н2                        |                                                      | 0.956 (17)                                           | C2A—                                                 | H2'                                                     | 0.98                                                    | 34 (18)                                                 |
| C3—C4                        |                                                      | 1.383 (2)                                            | C3A—                                                 | C4A                                                     | 1.38                                                    | 34 (2)                                                  |
| С3—Н3                        |                                                      | 0.955 (18)                                           | C3A—                                                 | H3'                                                     | 1.00                                                    | (2)                                                     |
| C4—C5                        |                                                      | 1.385 (2)                                            | C4A—                                                 | C5A                                                     | 1.37                                                    | 7 (2)                                                   |
| C4—H4                        |                                                      | 0.952 (19)                                           | C4A—                                                 | H4'                                                     | 0.97                                                    | (2)                                                     |
| С5—С6                        |                                                      | 1.384 (2)                                            | C5A—                                                 | C6A                                                     | 1.38                                                    | 88 (2)                                                  |
| С5—Н5                        |                                                      | 0.996 (18)                                           | C5A—                                                 | H5'                                                     | 1.01                                                    | 7 (18)                                                  |
| С6—Н6                        |                                                      | 1.005 (16)                                           | C6A—                                                 | H6'                                                     | 0.96                                                    | 9 (18)                                                  |
| N7—C12                       |                                                      | 1.4080 (17)                                          | N7A—                                                 | C12A                                                    | 1.40                                                    | 39 (17)                                                 |
| N7—C8                        |                                                      | 1.4403 (18)                                          | N7A—                                                 | C8A                                                     | 1.44                                                    | 73 (17)                                                 |
| C8—N9                        |                                                      | 1.4690 (18)                                          | C8A—                                                 | N9A                                                     | 1.46                                                    | 606 (18)                                                |
| C8—H8A                       |                                                      | 0.976 (17)                                           | C8A—                                                 | H8C                                                     | 1.02                                                    | 28 (15)                                                 |
| C8—H8B                       |                                                      | 0.977 (17)                                           | C8A—                                                 | H8D                                                     | 0.98                                                    | 6 (16)                                                  |
| N9—C10                       |                                                      | 1.3339 (18)                                          | N9A—                                                 | C10A                                                    | 1.34                                                    | 43 (17)                                                 |
| N9—H9                        |                                                      | 0.923 (19)                                           | N9A—                                                 | H9'                                                     | 0.85                                                    | (2)                                                     |
| C10—O11                      |                                                      | 1.2381 (16)                                          | C10A-                                                | -O11A                                                   | 1.23                                                    | 65 (17)                                                 |
| C10-C18                      |                                                      | 1.496 (2)                                            | C10A-                                                | -C18A                                                   | 1.49                                                    | 7 (2)                                                   |
| C12—C13                      |                                                      | 1.396 (2)                                            | C12A-                                                | -C17A                                                   | 1.39                                                    | 974 (19)                                                |
| C12—C17                      |                                                      | 1.397 (2)                                            | C12A-                                                | -C13A                                                   | 1.40                                                    | 013 (19)                                                |
| C13—C14                      |                                                      | 1.387 (2)                                            | C13A-                                                | -C14A                                                   | 1.38                                                    | 2 (2)                                                   |
| C13—H13                      |                                                      | 0.967 (19)                                           | C13A-                                                | -H13'                                                   | 0.94                                                    | 4 (16)                                                  |
| C14—C15                      |                                                      | 1.384 (3)                                            | C14A-                                                | -C15A                                                   | 1.37                                                    | 9 (2)                                                   |
| C14—H14                      |                                                      | 0.94 (2)                                             | C14A-                                                | -H14'                                                   | 1.04                                                    | (2)                                                     |
| C15—C16                      |                                                      | 1.372 (3)                                            | C15A-                                                | -C16A                                                   | 1.37                                                    | 78 (2)                                                  |
| C15—H15                      |                                                      | 0.96 (2)                                             | C15A-                                                | -H15'                                                   | 0.94                                                    | 2 (18)                                                  |
| C16—C17                      |                                                      | 1.391 (2)                                            | C16A-                                                | -C17A                                                   | 1.39                                                    | 1 (2)                                                   |
| C16—H16                      |                                                      | 0.99 (2)                                             | C16A-                                                | -H16'                                                   | 0.96                                                    | 66 (18)                                                 |
| C17—H17                      |                                                      | 0.93 (2)                                             | C17A-                                                | -H17'                                                   | 1.01                                                    | 6 (18)                                                  |
| C18—H18A                     |                                                      | 0.98 (2)                                             | C18A-                                                | -H18D                                                   | 0.93                                                    | (2)                                                     |
| C18—H18B                     |                                                      | 1.03 (2)                                             | C18A-                                                | -H18E                                                   | 0.99                                                    | (2)                                                     |
| C18—H18C                     |                                                      | 0.97 (2)                                             | C18A-                                                | -H18F                                                   | 0.99                                                    | 9(3)                                                    |
| C6—C1—C2                     |                                                      | 118.76 (13)                                          | C6A—                                                 | C1A—C2A                                                 | 119.                                                    | 11 (13)                                                 |
| C6-C1-N7                     |                                                      | 119.38 (12)                                          | C6A—                                                 | C1A—N7A                                                 | 120                                                     | .19 (13)                                                |
| C2—C1—N7                     |                                                      | 121.77 (12)                                          | C2A—                                                 | C1A—N7A                                                 | 120                                                     | .70 (12)                                                |
| C3—C2—C1                     |                                                      | 120.11 (13)                                          | C3A—                                                 | C2A—C1A                                                 | 120                                                     | .32 (13)                                                |
| С3—С2—Н2                     |                                                      | 120.7 (10)                                           | C3A—                                                 | C2A—H2'                                                 | 118.                                                    | 6 (10)                                                  |
| C1—C2—H2                     |                                                      | 119.2 (10)                                           | C1A—                                                 | C2A—H2'                                                 | 121                                                     | .1 (10)                                                 |
| C4—C3—C2                     |                                                      | 120.77 (14)                                          | C2A—                                                 | C3A—C4A                                                 | 120                                                     | .32 (15)                                                |

| С4—С3—Н3      | 118.8 (10)  | C2A—C3A—H3'    | 119.9 (11)  |
|---------------|-------------|----------------|-------------|
| С2—С3—Н3      | 120.4 (10)  | C4A—C3A—H3'    | 119.7 (11)  |
| C3—C4—C5      | 119.36 (14) | C5A—C4A—C3A    | 119.70 (14) |
| C3—C4—H4      | 121.2 (11)  | C5A—C4A—H4'    | 121.2 (11)  |
| С5—С4—Н4      | 119.4 (11)  | C3A—C4A—H4'    | 119.1 (11)  |
| C6—C5—C4      | 120.37 (14) | C4A—C5A—C6A    | 120.52 (14) |
| С6—С5—Н5      | 119.0 (10)  | С4А—С5А—Н5'    | 121.6 (10)  |
| С4—С5—Н5      | 120.6 (10)  | С6А—С5А—Н5'    | 117.9 (11)  |
| C5—C6—C1      | 120.63 (13) | C5A—C6A—C1A    | 120.01 (14) |
| С5—С6—Н6      | 120.0 (9)   | С5А—С6А—Н6'    | 123.6 (10)  |
| С1—С6—Н6      | 119.3 (9)   | С1А—С6А—Н6'    | 116.4 (10)  |
| C12—N7—C1     | 122.57 (11) | C12A—N7A—C1A   | 119.61 (11) |
| C12—N7—C8     | 120.47 (12) | C12A—N7A—C8A   | 121.19 (11) |
| C1—N7—C8      | 116.94 (11) | C1A—N7A—C8A    | 117.04 (11) |
| N7—C8—N9      | 112.84 (11) | N7A—C8A—N9A    | 113.93 (11) |
| N7—C8—H8A     | 108.2 (10)  | N7A—C8A—H8C    | 106.4 (8)   |
| N9—C8—H8A     | 108.7 (9)   | N9A—C8A—H8C    | 110.8 (8)   |
| N7—C8—H8B     | 111.1 (9)   | N7A—C8A—H8D    | 110.7 (9)   |
| N9—C8—H8B     | 106.3 (9)   | N9A—C8A—H8D    | 105.8 (9)   |
| H8A—C8—H8B    | 109.6 (13)  | H8C—C8A—H8D    | 109.1 (12)  |
| C10—N9—C8     | 119.49 (12) | C10A—N9A—C8A   | 124.07 (12) |
| C10—N9—H9     | 119.4 (11)  | C10A—N9A—H9'   | 116.7 (13)  |
| С8—N9—H9      | 121.1 (11)  | C8A—N9A—H9'    | 118.9 (13)  |
| O11—C10—N9    | 120.94 (13) | O11A—C10A—N9A  | 123.07 (13) |
| O11—C10—C18   | 121.25 (13) | O11A-C10A-C18A | 121.19 (13) |
| N9—C10—C18    | 117.76 (13) | N9A—C10A—C18A  | 115.73 (13) |
| C13—C12—C17   | 118.09 (13) | C17A—C12A—C13A | 118.34 (12) |
| C13—C12—N7    | 120.99 (13) | C17A—C12A—N7A  | 122.14 (12) |
| C17—C12—N7    | 120.90 (13) | C13A—C12A—N7A  | 119.47 (12) |
| C14—C13—C12   | 120.82 (15) | C14A—C13A—C12A | 120.56 (13) |
| C14—C13—H13   | 119.4 (10)  | C14A—C13A—H13' | 119.6 (10)  |
| C12—C13—H13   | 119.8 (10)  | C12A—C13A—H13' | 119.8 (10)  |
| C15—C14—C13   | 120.79 (17) | C15A—C14A—C13A | 120.96 (14) |
| C15—C14—H14   | 118.2 (13)  | C15A—C14A—H14' | 121.5 (11)  |
| C13—C14—H14   | 121.0 (13)  | C13A—C14A—H14' | 117.5 (11)  |
| C16—C15—C14   | 118.65 (15) | C16A—C15A—C14A | 118.93 (14) |
| C16—C15—H15   | 119.4 (13)  | C16A—C15A—H15' | 117.8 (11)  |
| C14—C15—H15   | 121.9 (13)  | C14A—C15A—H15' | 123.3 (11)  |
| C15—C16—C17   | 121.59 (17) | C15A—C16A—C17A | 121.29 (14) |
| C15—C16—H16   | 118.3 (12)  | C15A—C16A—H16' | 120.4 (10)  |
| C17—C16—H16   | 120.1 (12)  | C17A—C16A—H16' | 118.3 (10)  |
| C16—C17—C12   | 120.06 (16) | C16A—C17A—C12A | 119.91 (13) |
| С16—С17—Н17   | 119.9 (12)  | C16A—C17A—H17' | 119.7 (10)  |
| C12—C17—H17   | 120.0 (12)  | C12A—C17A—H17' | 120.3 (10)  |
| C10—C18—H18A  | 114.5 (13)  | C10A—C18A—H18D | 110.5 (15)  |
| C10—C18—H18B  | 108.0 (13)  | C10A—C18A—H18E | 113.5 (10)  |
| H18A—C18—H18B | 105.4 (18)  | H18D—C18A—H18E | 109.5 (18)  |
| C10—C18—H18C  | 111.0 (12)  | C10A—C18A—H18F | 103.6 (13)  |
| H18A—C18—H18C | 109.1 (17)  | H18D—C18A—H18F | 109 (2)     |

| H18B—C18—H18C   | 108.4 (18)   | H18E—C18A—H18F      | 110.8 (17)   |
|-----------------|--------------|---------------------|--------------|
| C6—C1—C2—C3     | -1.0 (2)     | C6A—C1A—C2A—C3A     | -1.5 (2)     |
| N7—C1—C2—C3     | -177.43 (13) | N7A—C1A—C2A—C3A     | 179.28 (13)  |
| C1—C2—C3—C4     | 1.3 (2)      | C1A—C2A—C3A—C4A     | 0.5 (2)      |
| C2—C3—C4—C5     | -0.7 (2)     | C2A—C3A—C4A—C5A     | 0.8 (2)      |
| C3—C4—C5—C6     | -0.2 (2)     | C3A—C4A—C5A—C6A     | -1.0 (2)     |
| C4—C5—C6—C1     | 0.5 (2)      | C4A—C5A—C6A—C1A     | 0.0 (2)      |
| C2—C1—C6—C5     | 0.1 (2)      | C2A—C1A—C6A—C5A     | 1.3 (2)      |
| N7—C1—C6—C5     | 176.64 (12)  | N7A—C1A—C6A—C5A     | -179.52 (13) |
| C6—C1—N7—C12    | 136.58 (13)  | C6A—C1A—N7A—C12A    | 127.70 (14)  |
| C2-C1-N7-C12    | -47.00 (18)  | C2A—C1A—N7A—C12A    | -53.09 (17)  |
| C6—C1—N7—C8     | -44.83 (17)  | C6A—C1A—N7A—C8A     | -68.79 (16)  |
| C2—C1—N7—C8     | 131.58 (13)  | C2A—C1A—N7A—C8A     | 110.42 (14)  |
| C12—N7—C8—N9    | -78.30 (16)  | C12A—N7A—C8A—N9A    | 86.00 (15)   |
| C1—N7—C8—N9     | 103.09 (14)  | C1A—N7A—C8A—N9A     | -77.22 (15)  |
| N7—C8—N9—C10    | 165.61 (12)  | N7A—C8A—N9A—C10A    | -123.28 (14) |
| C8—N9—C10—O11   | -2.1 (2)     | C8A—N9A—C10A—O11A   | 6.2 (2)      |
| C8—N9—C10—C18   | 175.69 (13)  | C8A—N9A—C10A—C18A   | -172.44 (13) |
| C1—N7—C12—C13   | -15.10 (19)  | C1A—N7A—C12A—C17A   | 153.53 (13)  |
| C8—N7—C12—C13   | 166.36 (12)  | C8A—N7A—C12A—C17A   | -9.28 (19)   |
| C1—N7—C12—C17   | 166.83 (12)  | C1A—N7A—C12A—C13A   | -28.97 (18)  |
| C8—N7—C12—C17   | -11.70 (19)  | C8A—N7A—C12A—C13A   | 168.23 (13)  |
| C17—C12—C13—C14 | -0.2 (2)     | C17A—C12A—C13A—C14A | 0.9 (2)      |
| N7—C12—C13—C14  | -178.29 (12) | N7A—C12A—C13A—C14A  | -176.72 (13) |
| C12-C13-C14-C15 | -0.1 (2)     | C12A—C13A—C14A—C15A | 0.1 (2)      |
| C13-C14-C15-C16 | -0.2 (2)     | C13A—C14A—C15A—C16A | -0.9 (2)     |
| C14—C15—C16—C17 | 0.8 (2)      | C14A—C15A—C16A—C17A | 0.8 (2)      |
| C15-C16-C17-C12 | -1.1 (2)     | C15A—C16A—C17A—C12A | 0.3 (2)      |
| C13—C12—C17—C16 | 0.7 (2)      | C13A—C12A—C17A—C16A | -1.1 (2)     |
| N7-C12-C17-C16  | 178.87 (13)  | N7A—C12A—C17A—C16A  | 176.48 (13)  |

### Hydrogen-bond geometry (Å, °)

| D—H···A                                               | <i>D</i> —Н                 | $H \cdots A$           | $D \cdots A$                                            | D—H··· $A$         |
|-------------------------------------------------------|-----------------------------|------------------------|---------------------------------------------------------|--------------------|
| N9—H9…O11A <sup>i</sup>                               | 0.923 (19)                  | 2.097 (18)             | 2.9924 (15)                                             | 163.2 (16)         |
| C18—H18A···O11A <sup>i</sup>                          | 0.98 (2)                    | 2.48 (2)               | 3.329 (2)                                               | 145.1 (17)         |
| N9A—H9'…O11                                           | 0.85 (2)                    | 2.03 (2)               | 2.8671 (16)                                             | 169.7 (18)         |
| C17A—H17'…O11A                                        | 1.016 (18)                  | 2.440 (18)             | 3.4288 (18)                                             | 164.5 (14)         |
| C18A—H18E…O11                                         | 0.99 (2)                    | 2.42 (2)               | 3.254 (2)                                               | 141.2 (14)         |
| C3—H3···Cg4 <sup>ii</sup>                             | 0.95 (2)                    | 2.89                   | 3.68                                                    | 141                |
| C8—H8A···Cg3 <sup>ii</sup>                            | 0.98 (2)                    | 3.14                   | 3.92                                                    | 139                |
| C8A—H8C…Cg4 <sup>iii</sup>                            | 1.03 (1)                    | 3.23                   | 3.96                                                    | 129                |
| C14—H14···Cg1 <sup>iv</sup>                           | 0.94 (2)                    | 2.91                   | 3.74                                                    | 148                |
| C16A—H16'····Cg3 <sup>i</sup>                         | 0.97 (2)                    | 3.19                   | 3.97                                                    | 139                |
| C17—H17···Cg1 <sup>v</sup>                            | 0.93 (2)                    | 2.95                   | 3.49                                                    | 118                |
| C18—H18C…Cg2                                          | 0.97 (2)                    | 2.80                   | 3.54                                                    | 134                |
| Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x, y-1/2, | -z+1/2; (iii) $-x+1$ , $-z$ | y+1, -z+1; (iv) -x, -z | <i>y</i> +1, - <i>z</i> ; (v) - <i>x</i> , <i>y</i> +1/ | 2, <i>-z</i> +1/2. |







